
If the material is preliminarily loaded, then by virtue of the orientation of the struc- 
tural elements (presumably sooty structures) strengthening of the material takes place, This 
in turn leads to an increase in the height of the potential barrier and a deviation from 
Eq. (4). 
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FRACTURE OF MATERIAL THROUGH THE ACTION OF AN INTERNAL 

HEAT SOURCE 

S. N. Kapel'yan UDC 536.421.1 

An analytic study was made of the displacement of the vaporization front and of the 
resultant thermoelastic stresses in a semiinfinite solid through the action of an 
internal spherical heat source. 

A heat source with a maximum at a certain depth is formed through the action of an elec- 
tron beam, as noted in [1-3]. In principle, much of the same mechanism of energy deposition 
is possible for a pulsed laser focused at some depth in the material, for a pulsed discharge 
with the Lenz-- Joule effect predominant, etc. With sufficiently sharp focusing and signifi- 
cant intensity of the heat source, volume vaporization is possible at artificial centers 
(fluctuation and gas bubbles, inclusions, etc.) which can lead to additional removal of mass 
as noted in [4]. 

We consider the following as a model problem for the analysis of the physical processes 
occurring through the action of such heat sources. Through the action of an enclosed volume 
heat source, vaporization of material takes place immediately and a high-temperature vapor 
region is created which occupies a sphere of radius Ro at the initial time. Heat transfer 
from this region gives rise to heating of the solid with subsequent phase transition (vapor- 
ization). With this kind of physics for the process, volume vapor formation occurs in the 
medium at high pressure. The kinetics of such a process was not developed. Therefore, Fren- 
kel' kinetics [5] was chosen at the zeroth approximation for this work. Displacement of the 
phase-transition boundary is determined from a solution of the Stefan problem (the effect of 
a free surface is not considered): 

M ( t )  c v - - -  

o o ( o§ 
= ~ .  P , Ro + I v ( ~ ) d ~ < ~ r < ~ ,  (1) 

at  r ~ Or , 6 

dTv = H (t) (T , - -  Tv], r < R o ' [v(T)dT, (2) 

0 0 

dT  ] ~ H (t) (T v - T  t 
t 

' (Ro+ 
5 

(3) 
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TABLE i. Dependence of Time tt for Expan- 
sion of Vapor Bubble and of the Relative 
Increase in Radius (Rfr -- Ro)/Ro on the Ini- 
tial Vapor Temperature To 

Rfr - -  Ro Material To, deg t:.lO, sec 
Ro 

Fe 
Fe 
Fe 
W 
W 
W 

3800 
4800 
5850 
7600 
9100 

11400 

2,8 
3,3 
3,8 
9,1 

10,8 
11,9 

4,3.10 -a 
4,6.10 -a 
4,9.10 -2 
7,4.10 -4 
8,4.10 -3 
8,7.10-~ 

T(r, 0 ) = 0 ,  Ro~r<oo ,  (5) 

Tv (r, O)= Q 4/3uR~ cvpv = T o , 0 < r < R o ,  (6) 

E 
v(t) = cs exp(  t ) ,  (7) 

T (r = Ro + !'v (x) d~, t) 
b 

whe re  R ( t )  = 1 / H ( t )  i s  t h e  t h e r m a l  r e s i s t a n c e .  

We c o n s i d e r  t h e  a s y m p t o t i c  s o l u t i o n  o f  t h e  p r o b l e m  f o r m u l a t e d  f o r  t h e  c a s e  where  t h e  a d -  
v a n c e  o f  t h e  v a p o r i z a t i o n  f r o n t  i s  s m a l l  i n  c o m p a r i s o n  w i t h  t h e  r a d i u s  o f  t h e  v a p o r  b u b b l e  
p r o d u c e d ,  i . e . ,  

t 
V (3) dT ~( Ro- (8) 

0 

We assume that the thermophysical characteristics of the material and of the vapor pro- 
duced are identical and independent of temperature and we take for the thermal resistance of 
the contact between vapor and solid [6] 

! 
R(t) ---- - -  ( 9 )  

4 ~ R o  

(8)  and ( 9 ) ,  we t h e n  o b t a i n  i n t e g r a l  e q u a t i o n s  f o r  t h e  p h a s e - t r a n s i t i o n  f r o n t  Using Eqs. 
Rfr in the form 

t t t 

�9 V t ~ - ~  x V t - T 
6 V t - ' ~  o "o 

t 

T v ( t ) =  Toexp -~-~] + I (Rfr exp - -  - ~ - r  ,x) - -  ( 1 1 )  

o 

For most materials the characteristic temperature is 

t 
e >> r (r = R0 + .t: t )  (12) 

0 
and, applying the method of steepest descent to the term with v(T) in Eqs. (i0), (ii) under 
t h e  c o n d i t i o n s  (7) and ( 1 2 ) ,  and t h e n  c o n s i d e r i n g  t h e  a s y m p t o t i c  e s t i m a t e s  o f  t h e  t e m p e r a t u r e  
of the material at the phase-transitlon front for long times [7], we obtain 

ToR~ Leo V'--{ (13) 
T ( R f r ,  t).~ 6V-~(at)a/~ cV-~-a 

4 6 2  
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Fig. i. Dependence of di- 
mensionless stress Orr/4GmTo 
on the dimensionless distance 
q = I/Ro: I) v = 0.25; 2) 

= 0.3; 3) v = 0.33. 

Physical considerations indicate that at some time the temperature at the phase-transi- 
tion front T(Rfr , t) % Tb, i.e., all the heat will be used up in phase transiton and thermal 
conductivity. The rate of displacement of the phase-transition boundary then tends to zero, 
and the maximum radius of the vapor bubble evaluated by the method of steepest descent under 
the conditions (7) and (12) is 

where 

[I 

R = R ~ i" v (T) dT, N Ro -4- cot1, fr --o ", 
b 

(14) 

c o = c  s exp  - -  . ( 1 5 )  
t 

This time is determined from Eq. (13) where one should set 

T (Ro + % t l ,  ta) = T b ,  ( 1 6 )  

where T b is the boiling point corresponding to thermodynamic conditions at maximum expansion 
of the vapor bubble. 

Asymptotic estimates of tx and of the advance of the vaporization front are given in 
Table 1 (Fe, W) for Ro ~ 10 -7 m, and for T b and the thermophysical constants of the materials 
under normal conditions. The expressions obtained for t: and for the maximum radius of the 
vapor bubble should be considered as upper limits, since the return flow of atoms because of 
condensation is not taken into account completely in this problem. In addition, under actual 
conditions, the nonequlibrium nature of the temperature field leads to bubble motion, which 
also changes its size. 

If the vapor bubble produced is close to a surface, fracture of the material is possible 
through the combined action of vapor pressure and resultant thermoe!astic stresses. 

We evaluate the magnitude of the thermoelastic stresses at a surface of the material 
which is at a distance Z from the center of a vapor bubble. 

After maximum expansion of the vapor bubble, the temperature field in the material i~ 
described in the simplest case by the equation of thermal conductivity, 

= a  �9 O ~ r ,  z <~ oo ,  ( 1 7 )  
at O r  \ Or / + O: ' 

T ( r ,  z, O) = ! Tb | / r2  + (z - -  l) ~ < R o ,  ( 1 8 )  

I o V :  + (z - t)~ >~ Ro, 
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TABLE 2. Dependence of the Dimensionless Time x = ~Ro/at on 
the Dimensionless Coordinate q = IRe for Different 

l x = l R j a t  

q =-~0 v =  0 , 2 5  V = 0 , 3  v =  0 , 3 3  

1,01 
1,05 
1,1 
1,2 
1,5 

-2,0 
4,0 
5,0 

10,0 
50,0 

301,336 
61,3480 
31,3623 
16,3898 
7,43830 
4,33498 
1,83196 
1,44092 
0,704951 
0,0200019 

321,253 
65,2650 
33,2788 
17,3066 
7,76410 
4;48853 
1,88682 
1,48333 
0,725239 
0,0240045 

333,208 
67,6210 
34,4333 
17,8609 
7,~6203 
4,58140 
1,91981 
1,50880 
0,737416 
0,0264067 

The solution of Eqs. ( 1 7 ) - ( 1 9 )  for r > Re is 

= 0 .  (19) 

where 

T (r, z, t) --~ ~o (rl, l) + qo (r.,, l), (20) 

rp(q, t)-- Tb ~{~( r, + Ro ) _ q ~ (  r , - -Ro )} 
2 2 ]f~i- 2 11 at 

rl [/, ~ exp - 4at - -  4at l l '  (21) 

ra = l/-r-Z-+ (z-- /)~;  r~ = l/-r-~-+ (z -F/)". (22) 

Through the action of the temperature field, a field of thermoelastic stresses arises 
and the thermoelastic potential of the latter in the quasistatic formulation ~s determined 
from the solution of the following problem [8]: 

1 0 (r 0r -Jr 0 'r  = mr(r,  z, t), (23) 
�9 Or \ Or } az ~ 

( ~ ) , = o  = (~r,)~=o. = O. ( 2 ~ )  

Finally, the value of the thermoelast~c stresses at the surface in the dimensionless 
variables 

lRo. I 
x =  ~ , q =  - -  (25) 

at Ro 

is given by 

§ 

qq-2v ierfc ] f x  q - - 2 v  ] ' x  
q]/-x-q 2 J /q -  ( q - -  1) -+- - -  i e r f C q  V ' ~ - .  2 ],r~. (q q- 1) + 

4 v ( q - -  1) i~erfc V-x 4v(q + 1) Vx  
xq 2 2 | / q  (q --  1) xq 2 i" erfc 2 l/-q (q q- 1) q- 

+ (qx) --3/28~' [ ~*eric V/2Vq VFv.q_ ] 2v __--:-7-~ (q - -  l ) - - i S e d c  2 (q~ l) + - -  3q S (26) 

In accordance with the quasistatic formulation of the problem, we have 

Grr (t = O) = 2V ~ O. (27) 
4GmT b 3q 3. 

The asymptotes of Eq. (26) for short and long times are easily found from the asymptotic 
representation for Inerfc z and are 

4GmTb 3q" ]/--~-q (q - -  1) 
t--+O 
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1 e x p [ - - x  ( q + l ) 2 ]  
+ Vaxq(q  + I) q 

4GmTb 3 V - n  q 5r t--~ ~ ,  

t ~ Iro 
a 

(28) 

(29) 

Physical considerations indicate that the stress at the surface must be a maximum at 
some time. Taking the derivative of Eq. (26), we determine this time from the following 
transcendental equation (in the dimensionless variables): 

(q - -  1) x 2 - -  2x (q + 2v) + 8v + [x 2 (q + 1) + 2x (q - -  2v) - -  8v] exp ( - -  x) = O. (30) 

The resultant equation has a single real root, whose value~ calculated for different v 
and q on a Minsk-32 computer, are given in Table 2. Maximum values of the dimensionless stress 
at the surface calculated from Eq. (26) for different v and q are shown in Fig. 1 on a semi- 
logarithmic scale. 

The equations obtained make it possible to estimate the size of the region which will 
be fractured under the action of thermoelastic stresses. It is necessary to know the tensile 
strength of the material for this. We assume that fracture of the material occurs at stresses 
of the order of kY. The theoretical value is k % 0.i, but in practice fracture occurs 
at values of k that are 3-5 times less. We then obtain from Eq. (26) and Fig. 1 the value 
of q for which Orr is equal to the tensile strength of the test material. 

NOTATION 

T, temperature; t, time; a~ thermal diffusivity; %, thermal conductivity; p, density; 
t 

4 (@o+ S~ dz)3pn; Cv, T v, PV, mass specific heat, tern- r, z, running coordinates; M(0=-~ n 

0 
perature, and density of vaporized material; v(t), velocity of vaporization front; L, specific 
heat of vaporization; To, initial temperature of vaporized material; Q, energy per pulse; 
Y = Ex/R, characteristic temperature in Frenkel' kinetics; Tb, boiling point; r thermoelas- 
tic potential; Orz, ~ thermoelastic stresses; m = [(i + v)/(l -- v)]at, where ~ is the 
Poisson coefficient and a t is the coefficient of linear expansion; G, shear modulus; Y, Young's 
modulus. 
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